Sanford Lab Status

Underground Laboratory @ Homestake

Aerial View of Homestake

Ross Headframe

Section View of Homestake Mine

LB/Davis - 2/26/09

Orientation for "Long Section"

LB/Davis - 2/26/09

Homestake Footprint

Re-Entry Work Begins, June 2007

Rehabilitation of shafts and hoists

Lab Staff

- October 2007: 6 employees
- Feb 2009:
 - -68 Full Time
 - 26 Part time
 - Contractor staff on site ~ 25

Shaft Inspections

LB/Davis - 2/26/09

Refurbishing Steel Sets in Ross

Newly-opened Mine Levels Inspected

Safety
Assessments
a top priority!

Access Control / Risk Assessment Strategies

Access to a new level involves:

- Inspection mission
 - Expert, experienced crew
 - **Identify hazards**
- Evaluation of risks
 - Determine level of risk
 - Develop maps for allowed access
- Mitigation plans for more extensive access

Water-Removal Challenges

Stationary Pump System

3 stations 1500 gpm pumps 700 hp motors

1250 foot pumping head 12" pump columns

(4th station underwater)

Pump Re-Installation

Re-commissioning
of pump chain
to begin de-watering

1250L Stationary Pump and Controller

2450L Stationary Pump

Completing the Chain

Stations at 3950L, 4250L, 4550L

- 4 submersible pumps per station
- 450-500gpm each; 1800-2000 total

Ross Shaft pool pumping capacity

- 1 submersible pump at 4850 feet
- 1500-1800gpm capacity

Submersible Pumps on 3950L

Piping from 4250L into 3950L Tank

4550L Submersible Pumps in Action

Making progress!

Water level 2/26 4775 (feet below surface)

LB/Davis - 2/26/09

Draining the Mine

"Deep Six" Project: 1500 gpm well pump at base of #6 Winze

Plans for a DRY MINE

Not only water... it's what' in it!

Pooled water has leached minerals from rocks
Iron oxide must be removed!

Lamella Clarifiers

Coagulant polymers and flocculants aid precipitation of iron

Higher Efficiency Fe Removal

2000 gpm Sand filters

Homestake Water Treatment Plant Back in Service

Homestake Waterfall Back in Business

Fish are happy

LB/Davis - 2/26/09

So are the Tourists

"Early Science" Progress

- Presently ongoing
 - Geophysics/Hydrology
 - Microbiology
- Plans maturing
 - LUX
 - MAJORANA

Towards a Transparent Earth

S.D. Glaser, *UC*, *Berkeley* W. Roggenthen, *SDSMT* L.R. Johnson, E.L. Majer, *LBNL*

Install an acoustic "microscope" surrounding the Homestake workings -

1st NSF funded DUSEL research

- Develop deep in-situ seismic observatory for rapid imaging of dynamical geo-processes at depth.
- Provide rock mass dynamics and safety information to miners and tunnelers
- 3) Provide an infrastructure for all earth scientists
- 4) Improve ability to detect and characterize underground structures and activity

More Geophysics Research

- LIGO seismometer stations
 - $-300, 800, 2000, \{4100\}$
- Tiltmeter installations
 - SDSMT/FNAL
- Hydrometry
 - Sampling #6 Winze
 - 4550 to 8000

Deployments at 800 L and 2000 L

Microbiology

Cynthia Anderson (Black Hills State) samples "interesting" fungus at 2000 L

1st Sanford Lab Publication!

Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA

Gurdeep Rastogi¹, Geetha L. Muppidi¹, Raghu N. Gurram¹, Akash Adhikari¹, Kenneth M. Bischoff², Stephen R. Hughes², William A. Apel³, Sookie S. Bang¹, David J. Dixon¹, Rajesh K. Sani¹ (¹-SDSMT, ²-USDA, ³-INL)

Site Characterization starts

Radon monitoring Natural radioactivity measurements

DongMing Mei (USD)

U/Th/K Assays

Poorman/Yates

 U
 0.08 ppm
 0.03 pCi/gm

 Th
 0.2 ppm
 0.02 pCi/gm

 K
 0.1 pct
 0.84 pCi/gm

Rhyolite

 U
 9 ppm
 3.1 pCi/gm

 Th
 12 ppm
 1.3 pCi/gm

 K
 3 pct
 25 pCi/gm

(AI Smith, LBNL)

Major "Early" Physics Experiments

- LUX: Dark Matter search
 - Liquid Xenon TPC
 - To be deployed in Davis Cavern 4850 L

- Majorana "Demonstrator": 0νββ
 - E-forming lab 800L (present plan)
 - Counting lab at 4850 L

LUX: Large Underground Xenon Experiment

- TPC-based noble liquid detector
 - 350 kg liquid xenon TPC (Time Projection Chamber)
 - Deployed in 8 meter diameter water tank
 - 4850 Level, "Davis" chamber
- Principals:
 - Richard Gaitskell, Brown University
 - Tom Shutt, Case Western Reserve
 - CNA Consulting, Lee Petersen

LUX cryostat

- 350 kg LXe
- 2-phase
- TPC configuration
- PMTs above/below
- High voltage grids

LUX Deployed in 4850 Davis Cavern

Prototype Cryostat

Case Western
Stainless
Full size can
small detector
(50 kg)

Davis Cavern

1965
solar v experiment
100,000 gal cleaning fluid

Upper Level Floor Plan

Plans: CNA Engineering, Minneapolis... Lee Petersen

Lower Level Floor Plan

LUX Plan View, Dec 08

Building Elevations & Sections... Warehouse

Majorana: 76 Ge $0\nu\beta\beta$ -decay

A 1-tonne ⁷⁶Ge Experiment

The MAJORANA collaboration is currently pursuing R&D aimed at a ~1 tonne scale ⁷⁶Ge 0v-decay experiment that would be one of the flagship Suite of Experiments to be sited at DUSEL Homestake.

1-tonne Science goals:

- Determine the nature of the neutrino, Majorana or Dirac.
- Test the fundamental symmetry of lepton number conservation.
- Probe absolute neutrino mass at a sensitivity of 20-40 meV.
- Seek to understand the origin of particle masses.
- Search for Dark Matter candidates.

1-tonne Ge - Projected Sensitivity vs. Background

Goal is to achieve ultra-low backgrounds of less than 1 count per ton of material per year in the Region of Interest (ROI) about the $\beta\beta(0v)$ Q-value energy (~4 keV at 2039 keV).

The MAJORANA Demonstrator Module

PLANS for Early Science deployment

Low background cryostats and shields
Develop electroforming techniques
in underground environment
Ultra clean assembly techniques

60 kg Ge (50% enriched ⁷⁶Ge)
Crystal growth, detector manufacture

Deployment underground at Sanford Lab Electroforming lab at 800 L Assembly and counting area at 4850 L

New Drift Transition Space, with Majorana

Deployment

LUX

- Early Summer 2009
 - Surface Warehouse
- Late Fall 2009
 - 4850 L Davis Cavern

MAJORANA

Early winter 2009

Summary

- Great progress in re-entry/de-watering
- Robust Early Science program underway
- Developing infrastructure of value to DUSEL
 - Davis cavern environmental systems and water tank suitable for next generation Dark Matter experiment
 - E-forming capabilities will benefit entire community and see use for many experiments
 - Low background facility will see continuous use
 - Establishing basis for geology and microbiology programs
- Developing experienced staff, administrative framework for successful experimental programs at DUSEL

